LLL on the Average

نویسندگان

  • Phong Q. Nguyen
  • Damien Stehlé
چکیده

Despite their popularity, lattice reduction algorithms remain mysterious in many ways. It has been widely reported that they behave much more nicely than what was expected from the worst-case proved bounds, both in terms of the running time and the output quality. In this article, we investigate this puzzling statement by trying to model the average case of lattice reduction algorithms, starting with the celebrated Lenstra-Lenstra-Lovász algorithm (L). We discuss what is meant by lattice reduction on the average, and we present extensive experiments on the average case behavior of L, in order to give a clearer picture of the differences/similarities between the average and worst cases. Our work is intended to clarify the practical behavior of L and to raise theoretical questions on its average behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variants of the LLL Algorithm in Digital Communications: Complexity Analysis and Fixed-Complexity Implementation

The Lenstra-Lenstra-Lovász (LLL) algorithm is the most practical lattice reduction algorithm in digital communications. In this paper, several variants of the LLL algorithm with either lower theoretic complexity or fixed-complexity implementation are proposed and/or analyzed. Firstly, the O(n log n) theoretic average complexity of the standard LLL algorithm under the model of i.i.d. complex nor...

متن کامل

Segment LLL Reduction of Lattice Bases Using Modular Arithmetic

The algorithm of Lenstra, Lenstra, and Lovász (LLL) transforms a given integer lattice basis into a reduced basis. Storjohann improved the worst case complexity of LLL algorithms by a factor of O(n) using modular arithmetic. Koy and Schnorr developed a segment-LLL basis reduction algorithm that generates lattice basis satisfying a weaker condition than the LLL reduced basis with O(n) improvemen...

متن کامل

Probabilistic Analysis of LLL Reduced Bases

Lattice reduction algorithms behave much better in practice than their theoretical analysis predicts, with respect to both output quality and runtime. In this paper we present a probabilistic analysis that proves an average-case bound for the length of the first basis vector of an LLL reduced basis which reflects LLL experiments much better. Additionally, we use the same method to generate aver...

متن کامل

N-Dimensional LLL Reduction Algorithm with Pivoted Reflection

The Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm and many of its variants have been widely used by cryptography, multiple-input-multiple-output (MIMO) communication systems and carrier phase positioning in global navigation satellite system (GNSS) to solve the integer least squares (ILS) problem. In this paper, we propose an n-dimensional LLL reduction algorithm (n-LLL), expanding t...

متن کامل

Worst-Case Complexity of the Optimal LLL Algorithm

In this paper, we consider the open problem of the complexity of the LLL algorithm in the case when the approximation parameter t of the algorithm has its extreme value 1. This case is of interest because the output is then the strongest Lovász–reduced basis. Experiments reported by Lagarias and Odlyzko [LO83] seem to show that the algorithm remain polynomial in average. However no bound better...

متن کامل

Adaptive precision LLL and Potential-LLL reductions with Interval arithmetic

Lattice reduction is fundamental in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm (called LLL or L) has been improved in many ways through the past decades and remains one of the central tool for reducing lattice basis. In particular, its floating-point variants — where the long-integer arithmetic requi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006